首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   103篇
  2023年   14篇
  2022年   4篇
  2021年   45篇
  2020年   22篇
  2019年   32篇
  2018年   34篇
  2017年   42篇
  2016年   52篇
  2015年   76篇
  2014年   89篇
  2013年   86篇
  2012年   117篇
  2011年   94篇
  2010年   72篇
  2009年   64篇
  2008年   62篇
  2007年   71篇
  2006年   51篇
  2005年   51篇
  2004年   49篇
  2003年   41篇
  2002年   50篇
  2001年   20篇
  2000年   10篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
  1962年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有1336条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full‐sibs of Amphilophus labiatus (thick‐lipped) and Amphilophus citrinellus (thin‐lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick‐lipped species, but not in the thin‐lipped species. Intermediate phenotypic values were observed in hybrids from thick‐ and thin‐lipped species reared under “control” conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species‐specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick‐lipped species.  相似文献   
85.
86.
Factors modulating introgressive hybridization between the red mangrove species Rhizophora mangle and R. racemosa in spatially defined sites are poorly understood. To investigate this, we evaluated the reproductive phenology and the nutrient and physiological traits in those two species and their F1 hybrids genotyped with microsatellite data across a natural hybrid zone from the Pacific coast of Panama. We found no evidence that reproductive phenology represents a barrier to gene flow, because R. mangle and the F1 hybrids produced flowers and propagules throughout the annual cycle, while R. racemosa flowered only in the dry season. Soil nutrient concentrations decreased landward, while soil salinity varied only slightly. Foliar nutrients and δ15N signatures varied according to the soil nutrient gradient, but only foliar phosphorus and carbon varied among species. In contrast, two structural variables (height and trunk diameter) and leaf variables related to salinity tolerance (Na, Cl:Na, K:Na, cation:anion) and water-use efficiency (i.e., δ13C) differed among species, suggesting higher salinity tolerance for R. mangle and F1 hybrids compared with R. racemosa. We conclude that parental species and F1 hybrids differ in salinity tolerance and water-use efficiency, which could be associated with adaptive evolution of the red mangrove hybrid complex.  相似文献   
87.
Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.  相似文献   
88.
89.
90.

Background

The host species composition in a household and their relative availability affect the host-feeding choices of blood-sucking insects and parasite transmission risks. We investigated four hypotheses regarding factors that affect blood-feeding rates, proportion of human-fed bugs (human blood index), and daily human-feeding rates of Triatoma infestans, the main vector of Chagas disease.

Methods

A cross-sectional survey collected triatomines in human sleeping quarters (domiciles) of 49 of 270 rural houses in northwestern Argentina. We developed an improved way of estimating the human-feeding rate of domestic T. infestans populations. We fitted generalized linear mixed-effects models to a global model with six explanatory variables (chicken blood index, dog blood index, bug stage, numbers of human residents, bug abundance, and maximum temperature during the night preceding bug catch) and three response variables (daily blood-feeding rate, human blood index, and daily human-feeding rate). Coefficients were estimated via multimodel inference with model averaging.

Findings

Median blood-feeding intervals per late-stage bug were 4.1 days, with large variations among households. The main bloodmeal sources were humans (68%), chickens (22%), and dogs (9%). Blood-feeding rates decreased with increases in the chicken blood index. Both the human blood index and daily human-feeding rate decreased substantially with increasing proportions of chicken- or dog-fed bugs, or the presence of chickens indoors. Improved calculations estimated the mean daily human-feeding rate per late-stage bug at 0.231 (95% confidence interval, 0.157–0.305).

Conclusions and Significance

Based on the changing availability of chickens in domiciles during spring-summer and the much larger infectivity of dogs compared with humans, we infer that the net effects of chickens in the presence of transmission-competent hosts may be more adequately described by zoopotentiation than by zooprophylaxis. Domestic animals in domiciles profoundly affect the host-feeding choices, human-vector contact rates and parasite transmission predicted by a model based on these estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号